
The Fire Triangle
How to Mix Substitution, Dependent Elimination and Effects

Pierre-Marie Pédrot, Nicolas Tabareau

Gallinette (INRIA)

POPL’20
January, 23th 2020

Pédrot & Tabareau (Gallinette (INRIA)) The Fire Triangle 23/01/2020 1 / 19



It’s Time to CIC Ass and Chew Bubble-Gum

CIC, the Calculus of Inductive Constructions.

CIC, a very fancy intuitionistic logical system.
Not just higher-order logic, not just first-order logic
First class notion of computation and crazy inductive types

CIC, a very powerful functional programming language.
Finest types to describe your programs
No clear phase separation between runtime and compile time

The Pinnacle of the Curry-Howard correspondence

Pédrot & Tabareau (Gallinette (INRIA)) The Fire Triangle 23/01/2020 2 / 19



It’s Time to CIC Ass and Chew Bubble-Gum

CIC, the Calculus of Inductive Constructions.

CIC, a very fancy intuitionistic logical system.
Not just higher-order logic, not just first-order logic
First class notion of computation and crazy inductive types

CIC, a very powerful functional programming language.
Finest types to describe your programs
No clear phase separation between runtime and compile time

The Pinnacle of the Curry-Howard correspondence

Pédrot & Tabareau (Gallinette (INRIA)) The Fire Triangle 23/01/2020 2 / 19



It’s Time to CIC Ass and Chew Bubble-Gum

CIC, the Calculus of Inductive Constructions.

CIC, a very fancy intuitionistic logical system.
Not just higher-order logic, not just first-order logic
First class notion of computation and crazy inductive types

CIC, a very powerful functional programming language.
Finest types to describe your programs
No clear phase separation between runtime and compile time

The Pinnacle of the Curry-Howard correspondence

Pédrot & Tabareau (Gallinette (INRIA)) The Fire Triangle 23/01/2020 2 / 19



It’s Time to CIC Ass and Chew Bubble-Gum

CIC, the Calculus of Inductive Constructions.

CIC, a very fancy intuitionistic logical system.
Not just higher-order logic, not just first-order logic
First class notion of computation and crazy inductive types

CIC, a very powerful functional programming language.
Finest types to describe your programs
No clear phase separation between runtime and compile time

The Pinnacle of the Curry-Howard correspondence

Pédrot & Tabareau (Gallinette (INRIA)) The Fire Triangle 23/01/2020 2 / 19



It’s Time to CIC Ass and Chew Bubble-Gum

CIC, the Calculus of Inductive Constructions.

CIC, a very fancy intuitionistic logical system.
Not just higher-order logic, not just first-order logic
First class notion of computation and crazy inductive types

CIC, a very powerful functional programming language.
Finest types to describe your programs
No clear phase separation between runtime and compile time

The Pinnacle of the Curry-Howard correspondence

Pédrot & Tabareau (Gallinette (INRIA)) The Fire Triangle 23/01/2020 2 / 19



A CIC Joke

Yet CIC suffers from a fundamental flaw.

You want to show the wonders of Coq to a fellow programmer
You fire your favourite IDE
... and you’re asked the dreadful question.

Could you write a Hello World?

Pédrot & Tabareau (Gallinette (INRIA)) The Fire Triangle 23/01/2020 3 / 19



A CIC Joke

Yet CIC suffers from a fundamental flaw.

You want to show the wonders of Coq to a fellow programmer
You fire your favourite IDE
... and you’re asked the dreadful question.

Could you write a Hello World?

Pédrot & Tabareau (Gallinette (INRIA)) The Fire Triangle 23/01/2020 3 / 19



A CIC Joke

Yet CIC suffers from a fundamental flaw.

You want to show the wonders of Coq to a fellow programmer
You fire your favourite IDE
... and you’re asked the dreadful question.

Could you write a Hello World?

Pédrot & Tabareau (Gallinette (INRIA)) The Fire Triangle 23/01/2020 3 / 19



Sad reality (a.k.a. Curry-Howard)

Intuitionistic Logic ⇔ Functional Programming

Coq is even purer than Haskell:
No mutable state (obviously)
No exceptions (Haskell has them somehow)
No arbitrary recursion

and also no Hello World !

We want a type theory with effects !

Pédrot & Tabareau (Gallinette (INRIA)) The Fire Triangle 23/01/2020 4 / 19



Sad reality (a.k.a. Curry-Howard)

Intuitionistic Logic ⇔ Functional Programming

Coq is even purer than Haskell:
No mutable state (obviously)
No exceptions (Haskell has them somehow)
No arbitrary recursion

and also no Hello World !

We want a type theory with effects !

Pédrot & Tabareau (Gallinette (INRIA)) The Fire Triangle 23/01/2020 4 / 19



Sad reality (a.k.a. Curry-Howard)

Intuitionistic Logic ⇔ Functional Programming

Coq is even purer than Haskell:
No mutable state (obviously)
No exceptions (Haskell has them somehow)
No arbitrary recursion

and also no Hello World !

We want a type theory with effects !
Pédrot & Tabareau (Gallinette (INRIA)) The Fire Triangle 23/01/2020 4 / 19



Not Not a Problem

Intuitionistic Logic ⇔ Functional Programming

Thus, the same problem for mathematically inclined users.

How do I reason classically?

Pédrot & Tabareau (Gallinette (INRIA)) The Fire Triangle 23/01/2020 5 / 19



Not Not a Problem

Intuitionistic Logic ⇔ Functional Programming

Thus, the same problem for mathematically inclined users.

How do I reason classically?

Pédrot & Tabareau (Gallinette (INRIA)) The Fire Triangle 23/01/2020 5 / 19



Not Not a Problem

Intuitionistic Logic ⇔ Functional Programming

Thus, the same problem for mathematically inclined users.

How do I reason classically?

Pédrot & Tabareau (Gallinette (INRIA)) The Fire Triangle 23/01/2020 5 / 19



Not Not a Problem

Intuitionistic Logic ⇔ Functional Programming

Thus, the same problem for mathematically inclined users.

How do I reason classically?

Pédrot & Tabareau (Gallinette (INRIA)) The Fire Triangle 23/01/2020 5 / 19



Thesis
Non-Intuitionistic Logic ⇔ Impure Programming

We want a type theory with effects!

To program more!
Non-termination
Exceptions
State...

To prove more!
Classical logic
Univalence
Choice...

Pédrot & Tabareau (Gallinette (INRIA)) The Fire Triangle 23/01/2020 6 / 19



Thesis
Non-Intuitionistic Logic ⇔ Impure Programming

We want a type theory with effects!

To program more!
Non-termination
Exceptions
State...

To prove more!
Classical logic
Univalence
Choice...

Pédrot & Tabareau (Gallinette (INRIA)) The Fire Triangle 23/01/2020 6 / 19



Thesis
Non-Intuitionistic Logic ⇔ Impure Programming

We want a type theory with effects!

To program more!
Non-termination
Exceptions
State...

To prove more!
Classical logic
Univalence
Choice...

Pédrot & Tabareau (Gallinette (INRIA)) The Fire Triangle 23/01/2020 6 / 19



Something is Rotten in the State of Type Theory
Classical logic does not play well with type theory.

Barthe and Uustalu: CPS cannot interpret dependent elimination
Herbelin’s paradox: CIC + callcc is unsound!

We have been working on effectful type theories
Our specialty:

We justify them through program translations into CIC itself.

Forcing, reader monad, exceptions, free algebraic...

Effectful theories are always half-broken

dependent elimination has to be restricted (BTT)
or consistency forsaken, or worse

Pédrot & Tabareau (Gallinette (INRIA)) The Fire Triangle 23/01/2020 7 / 19



Something is Rotten in the State of Type Theory
Classical logic does not play well with type theory.

Barthe and Uustalu: CPS cannot interpret dependent elimination
Herbelin’s paradox: CIC + callcc is unsound!

We have been working on effectful type theories
Our specialty:

We justify them through program translations into CIC itself.

Forcing, reader monad, exceptions, free algebraic...

Effectful theories are always half-broken

dependent elimination has to be restricted (BTT)
or consistency forsaken, or worse

Pédrot & Tabareau (Gallinette (INRIA)) The Fire Triangle 23/01/2020 7 / 19



Something is Rotten in the State of Type Theory
Classical logic does not play well with type theory.

Barthe and Uustalu: CPS cannot interpret dependent elimination
Herbelin’s paradox: CIC + callcc is unsound!

We have been working on effectful type theories
Our specialty:

We justify them through program translations into CIC itself.

Forcing, reader monad, exceptions, free algebraic...

Effectful theories are always half-broken

dependent elimination has to be restricted (BTT)
or consistency forsaken, or worse

Pédrot & Tabareau (Gallinette (INRIA)) The Fire Triangle 23/01/2020 7 / 19



Something is Rotten in the State of Type Theory
Classical logic does not play well with type theory.

Barthe and Uustalu: CPS cannot interpret dependent elimination
Herbelin’s paradox: CIC + callcc is unsound!

We have been working on effectful type theories
Our specialty:

We justify them through program translations into CIC itself.

Forcing, reader monad, exceptions, free algebraic...

Effectful theories are always half-broken

dependent elimination has to be restricted (BTT)
or consistency forsaken, or worse

Pédrot & Tabareau (Gallinette (INRIA)) The Fire Triangle 23/01/2020 7 / 19



I Have a Bad Feeling about This

Why do we have trouble mixing effects and dependent types?

Coincidence? I Think Not!

Pédrot & Tabareau (Gallinette (INRIA)) The Fire Triangle 23/01/2020 8 / 19



I Have a Bad Feeling about This

Why do we have trouble mixing effects and dependent types?

Coincidence? I Think Not!

Pédrot & Tabareau (Gallinette (INRIA)) The Fire Triangle 23/01/2020 8 / 19



Definition
A type theory enjoys substitution if the following rule is derivable.

Γ, x : X ⊢ • : A Γ ⊢ t : X
Γ ⊢ • : A{x := t}

Definition
A type theory enjoys dependent elimination on booleans if we have:

Γ, b : B ⊢ P : □ Γ ⊢ • : P{b := true} Γ ⊢ • : P{b := false}
Γ, b : B ⊢ • : P

Definition
A type theory has observable effects if there is a closed term t : B that is
not observationally equivalent to a value, i.e. there is a context C[·] s.t.

C[true] ≡ true and C[false] ≡ true but C[t] ≡ false

Pédrot & Tabareau (Gallinette (INRIA)) The Fire Triangle 23/01/2020 9 / 19



Definition
A type theory enjoys substitution if the following rule is derivable.

Γ, x : X ⊢ • : A Γ ⊢ t : X
Γ ⊢ • : A{x := t}

Definition
A type theory enjoys dependent elimination on booleans if we have:

Γ, b : B ⊢ P : □ Γ ⊢ • : P{b := true} Γ ⊢ • : P{b := false}
Γ, b : B ⊢ • : P

Definition
A type theory has observable effects if there is a closed term t : B that is
not observationally equivalent to a value, i.e. there is a context C[·] s.t.

C[true] ≡ true and C[false] ≡ true but C[t] ≡ false

Pédrot & Tabareau (Gallinette (INRIA)) The Fire Triangle 23/01/2020 9 / 19



Definition
A type theory enjoys substitution if the following rule is derivable.

Γ, x : X ⊢ • : A Γ ⊢ t : X
Γ ⊢ • : A{x := t}

Definition
A type theory enjoys dependent elimination on booleans if we have:

Γ, b : B ⊢ P : □ Γ ⊢ • : P{b := true} Γ ⊢ • : P{b := false}
Γ, b : B ⊢ • : P

Definition
A type theory has observable effects if there is a closed term t : B that is
not observationally equivalent to a value, i.e. there is a context C[·] s.t.

C[true] ≡ true and C[false] ≡ true but C[t] ≡ false

Pédrot & Tabareau (Gallinette (INRIA)) The Fire Triangle 23/01/2020 9 / 19



Type Theory on Fire

Sounds like desirable properties, right?

Theorem (Fire Triangle)
substitution + dep. elimination + effects ⊢ logically inconsistent.

Pédrot & Tabareau (Gallinette (INRIA)) The Fire Triangle 23/01/2020 10 / 19



Type Theory on Fire

Sounds like desirable properties, right?

Theorem (Fire Triangle)
substitution + dep. elimination + effects ⊢ logically inconsistent.

Pédrot & Tabareau (Gallinette (INRIA)) The Fire Triangle 23/01/2020 10 / 19



There Is No Free Lunch

The proof is actually straightforward.

Proof.
If C distinguishes boolean values from an effectful term M, prove by
dependent elimination Π(b : B).C[b] = false, apply to M and derive
true = false.

We essentially retrofitted the definition of effects to make it work.

‘But most effects are also observables effects!

So it’s not cheating either.

And now for a high-level overview of the problem and solutions

Pédrot & Tabareau (Gallinette (INRIA)) The Fire Triangle 23/01/2020 11 / 19



There Is No Free Lunch

The proof is actually straightforward.

Proof.
If C distinguishes boolean values from an effectful term M, prove by
dependent elimination Π(b : B).C[b] = false, apply to M and derive
true = false.

We essentially retrofitted the definition of effects to make it work.

‘But most effects are also observables effects!

So it’s not cheating either.

And now for a high-level overview of the problem and solutions

Pédrot & Tabareau (Gallinette (INRIA)) The Fire Triangle 23/01/2020 11 / 19



There Is No Free Lunch

The proof is actually straightforward.

Proof.
If C distinguishes boolean values from an effectful term M, prove by
dependent elimination Π(b : B).C[b] = false, apply to M and derive
true = false.

We essentially retrofitted the definition of effects to make it work.

‘But most effects are also observables effects!

So it’s not cheating either.

And now for a high-level overview of the problem and solutions

Pédrot & Tabareau (Gallinette (INRIA)) The Fire Triangle 23/01/2020 11 / 19



There Is No Free Lunch

The proof is actually straightforward.

Proof.
If C distinguishes boolean values from an effectful term M, prove by
dependent elimination Π(b : B).C[b] = false, apply to M and derive
true = false.

We essentially retrofitted the definition of effects to make it work.

‘But most effects are also observables effects!

So it’s not cheating either.

And now for a high-level overview of the problem and solutions
Pédrot & Tabareau (Gallinette (INRIA)) The Fire Triangle 23/01/2020 11 / 19



It is not a Bug, it is a Feature™

Dependent types entail one major difference with simpler type systems.

A ≡β B Γ ⊢ M : B
Γ ⊢ M : A

Bad news 1
Typing rules embed the dynamics of programs!

Bad news 2
Effects make reduction strategies relevant.

Pédrot & Tabareau (Gallinette (INRIA)) The Fire Triangle 23/01/2020 12 / 19



It is not a Bug, it is a Feature™

Dependent types entail one major difference with simpler type systems.

A ≡β B Γ ⊢ M : B
Γ ⊢ M : A

Bad news 1
Typing rules embed the dynamics of programs!

Bad news 2
Effects make reduction strategies relevant.

Pédrot & Tabareau (Gallinette (INRIA)) The Fire Triangle 23/01/2020 12 / 19



It is not a Bug, it is a Feature™

Dependent types entail one major difference with simpler type systems.

A ≡β B Γ ⊢ M : B
Γ ⊢ M : A

Bad news 1
Typing rules embed the dynamics of programs!

Bad news 2
Effects make reduction strategies relevant.

Pédrot & Tabareau (Gallinette (INRIA)) The Fire Triangle 23/01/2020 12 / 19



It is not a Bug, it is a Feature™

Dependent types entail one major difference with simpler type systems.

A ≡β B Γ ⊢ M : B
Γ ⊢ M : A

Bad news 1
Typing rules embed the dynamics of programs!

Bad news 2
Effects make reduction strategies relevant.

Pédrot & Tabareau (Gallinette (INRIA)) The Fire Triangle 23/01/2020 12 / 19



Reduction in an Effectful World

Call-by-name vs. Call-by-value

Call-by-name: functions well-behaved vs. inductives ill-behaved
Call-by-value: inductives well-behaved vs. functions ill-behaved

Substitution is a feature of call-by-name

Dependent elimination is a feature of call-by-value

Pédrot & Tabareau (Gallinette (INRIA)) The Fire Triangle 23/01/2020 13 / 19



Reduction in an Effectful World

Call-by-name vs. Call-by-value

Call-by-name: functions well-behaved vs. inductives ill-behaved
Call-by-value: inductives well-behaved vs. functions ill-behaved

Substitution is a feature of call-by-name

Dependent elimination is a feature of call-by-value

Pédrot & Tabareau (Gallinette (INRIA)) The Fire Triangle 23/01/2020 13 / 19



Reduction in an Effectful World

Call-by-name vs. Call-by-value

Call-by-name: functions well-behaved vs. inductives ill-behaved
Call-by-value: inductives well-behaved vs. functions ill-behaved

Substitution is a feature of call-by-name

Dependent elimination is a feature of call-by-value

Pédrot & Tabareau (Gallinette (INRIA)) The Fire Triangle 23/01/2020 13 / 19



Impossible is not French

Three knobs ⇒ Four solutions

Down with effects: CBN and CBV reconcile
This is good ol’ CIC, Keep Calm and Carry on. (†)

Go CBN and restrict dependent elimination: Baclofen Type Theory

if M then N1 else N2 : if M then P1 else P2

CBV rules, respect values, and dump substitution

The least conservative approach

Who cares about consistency? I want all!

A paradigm shift: from type theory to dependent languages, e.g. ExTT

Pédrot & Tabareau (Gallinette (INRIA)) The Fire Triangle 23/01/2020 14 / 19



Impossible is not French

Three knobs ⇒ Four solutions

Down with effects: CBN and CBV reconcile
This is good ol’ CIC, Keep Calm and Carry on. (†)

Go CBN and restrict dependent elimination: Baclofen Type Theory

if M then N1 else N2 : if M then P1 else P2

CBV rules, respect values, and dump substitution

The least conservative approach

Who cares about consistency? I want all!

A paradigm shift: from type theory to dependent languages, e.g. ExTT

Pédrot & Tabareau (Gallinette (INRIA)) The Fire Triangle 23/01/2020 14 / 19



Impossible is not French

Three knobs ⇒ Four solutions

Down with effects: CBN and CBV reconcile
This is good ol’ CIC, Keep Calm and Carry on. (†)

Go CBN and restrict dependent elimination: Baclofen Type Theory

if M then N1 else N2 : if M then P1 else P2

CBV rules, respect values, and dump substitution

The least conservative approach

Who cares about consistency? I want all!

A paradigm shift: from type theory to dependent languages, e.g. ExTT

Pédrot & Tabareau (Gallinette (INRIA)) The Fire Triangle 23/01/2020 14 / 19



Impossible is not French

Three knobs ⇒ Four solutions

Down with effects: CBN and CBV reconcile
This is good ol’ CIC, Keep Calm and Carry on. (†)

Go CBN and restrict dependent elimination: Baclofen Type Theory

if M then N1 else N2 : if M then P1 else P2

CBV rules, respect values, and dump substitution

The least conservative approach

Who cares about consistency? I want all!

A paradigm shift: from type theory to dependent languages, e.g. ExTT

Pédrot & Tabareau (Gallinette (INRIA)) The Fire Triangle 23/01/2020 14 / 19



Impossible is not French

Three knobs ⇒ Four solutions

Down with effects: CBN and CBV reconcile
This is good ol’ CIC, Keep Calm and Carry on. (†)

Go CBN and restrict dependent elimination: Baclofen Type Theory

if M then N1 else N2 : if M then P1 else P2

CBV rules, respect values, and dump substitution

The least conservative approach

Who cares about consistency? I want all!

A paradigm shift: from type theory to dependent languages, e.g. ExTT

Pédrot & Tabareau (Gallinette (INRIA)) The Fire Triangle 23/01/2020 14 / 19



Pick Your Side, Comrade

Assuming you want consistent dependent effects...

Call-by-name vs. Call-by-value

Call-by-name and Call-by-value

(We had to pick a fancy name, everything else already taken.)

Pédrot & Tabareau (Gallinette (INRIA)) The Fire Triangle 23/01/2020 15 / 19



Pick Your Side, Comrade

Assuming you want consistent dependent effects...

Call-by-name vs. Call-by-value

Call-by-name and Call-by-value

CBPV

(We had to pick a fancy name, everything else already taken.)

Pédrot & Tabareau (Gallinette (INRIA)) The Fire Triangle 23/01/2020 15 / 19



Pick Your Side, Comrade

Assuming you want consistent dependent effects...

Call-by-name vs. Call-by-value

Call-by-name and Call-by-value

∂CBPV
(We had to pick a fancy name, everything else already taken.)

Pédrot & Tabareau (Gallinette (INRIA)) The Fire Triangle 23/01/2020 15 / 19



Bird’s Eye View

∂CBPV

Justified by all of our syntactic models so far

And we have quite a few!
Impure Forcing — Unnatural Presheaves
Reader
Exceptions — Free algebraic effects
Self-algebraic monads
...

← notice the lack of CPS here

Pédrot & Tabareau (Gallinette (INRIA)) The Fire Triangle 23/01/2020 16 / 19



Bird’s Eye View

∂CBPV

Justified by all of our syntactic models so far

And we have quite a few!
Impure Forcing — Unnatural Presheaves
Reader
Exceptions — Free algebraic effects
Self-algebraic monads
... ← notice the lack of CPS here

Pédrot & Tabareau (Gallinette (INRIA)) The Fire Triangle 23/01/2020 16 / 19



Bird’s Eye View

∂CBPV

The main novelties: two for the price of one

Not one, but two parallel hierarchies of universes: □v vs. □c!
Not one, but two let-bindings!

Γ ⊢ t : F A Γ ⊢ X : □c Γ, x : A ⊢ u : X
Γ ⊢ let x := t in u : X

Γ ⊢ t : F A Γ, x : A ⊢ X : □c Γ, x : A ⊢ u : X
Γ ⊢ dlet x := t in u : let x := t in X

See the paper for more details

Pédrot & Tabareau (Gallinette (INRIA)) The Fire Triangle 23/01/2020 17 / 19



Bird’s Eye View

∂CBPV

The main novelties: two for the price of one

Not one, but two parallel hierarchies of universes: □v vs. □c!
Not one, but two let-bindings!

Γ ⊢ t : F A Γ ⊢ X : □c Γ, x : A ⊢ u : X
Γ ⊢ let x := t in u : X

Γ ⊢ t : F A Γ, x : A ⊢ X : □c Γ, x : A ⊢ u : X
Γ ⊢ dlet x := t in u : let x := t in X

See the paper for more details

Pédrot & Tabareau (Gallinette (INRIA)) The Fire Triangle 23/01/2020 17 / 19



Much More

This was a very high-level talk

Many things I did not discuss here!

A good notion of purity: thunkability vs. linearity
Complex ∂CBPV encodings
Explicit model constructions
A new look on presheaves

Pédrot & Tabareau (Gallinette (INRIA)) The Fire Triangle 23/01/2020 18 / 19



Conclusion

What we did

Effects and dependent types: you can’t have your cake and eat it.
⇝ Purity, CBN, CBV, Michael Bay?

Even inconsistent theories have practical interest.
∂CBPV a unifying framework for dependent effects

What we should probably do

Study more in details CBV type theories
Try to give a model for classical logic, choice, what else?
Implement ∂CBPV?

Pédrot & Tabareau (Gallinette (INRIA)) The Fire Triangle 23/01/2020 19 / 19



Conclusion

What we did

Effects and dependent types: you can’t have your cake and eat it.
⇝ Purity, CBN, CBV, Michael Bay?

Even inconsistent theories have practical interest.
∂CBPV a unifying framework for dependent effects

What we should probably do

Study more in details CBV type theories
Try to give a model for classical logic, choice, what else?
Implement ∂CBPV?

Pédrot & Tabareau (Gallinette (INRIA)) The Fire Triangle 23/01/2020 19 / 19


